
HORIZON-EUROHPC-JU-2023-COE 1 January 2024– 31 December 2026

Grant Agreement No 101143931

POP Performance analysis
methodology

Marta Garcia-Gasulla, BSC

• POP-CoE starts in 2015

• Objectives:
• To offer performance analysis services to European HPC users.

• To develop a common methodology for performance analysis

• POP1 runs from October 2015 to March 2018

• POP2 runs from December 2018 to June 2022

• POP3 will run between January 2023 and
December 2026

2

Context and history

Performance Tools
Performance methodology

User

4 April 2024 Durham

• Who?
• BSC (coordinator), ES

• HLRS, DE

• JSC, DE

• INES-ID, PT

• RWTH Aachen, IT Center, DE

• TERATEC, FR

• IT4I, CZ

• UVSQ, FR

A team with

• Excellence in performance tools and tuning

• Excellence in programming models and practices

• Research and development background AND
proven commitment in application to real academic and industrial use cases

3

Partners

• POP methodology
• A methodology for performance analysis

• Agnostic of the tools
• But this presentation is based on BSC tools (Extrae, Paraver, Dimemas and Basic Analysis)

• You will see examples of the methodology applied using both JSC and BSC tools in the
following presentations

• MPI only applications
• But POP methodology is being extended to:

• Hybrid models: OpenMP, GPUs…

• I/O

• Vectorization

4

Content

4 April 2024 Durham

5

Performance analysis

.prv

Diagnosis

code

C
o

m
p

u
tatio

n
 Scalab

ility
P

aralle
l Efficie

n
cy

C
o

m
m

u
n

icatio
n

Efficie

n
cy

6

The journey

Identify

Structure

Select Focus
of Analysis

(FoA)

Efficiency
Metrics

Load balance

Conclusions
and

suggestions

Serialization

Transfer

Instruction
scalability

IPC
scalability

Frequency
scalability

Detailed
Analysis

C
o

m
p

u
tatio

n
 Scalab

ility
P

aralle
l Efficie

n
cy

C
o

m
m

u
n

icatio
n

Efficie

n
cy

7

The journey

Identify

Structure

Select Focus
of Analysis

(FoA)

Efficiency
Metrics

Load balancing

Conclusions
and

suggestions

Serialization

Transfer

Instruction
scalability

IPC
scalability

Frequency
scalability

Detailed
Analysis

Identify

Structure

• Objectives:
• Understand general structure

• Identify initialization/finalization phases

• Detect iterative pattern

• Granularity

• Different levels of “difficulty”  Different levels of knowledge

8

Identify structure

4 April 2024 Durham

• Usually use “MPI calls” view or “Useful Duration”

9

Identify structure

Iterative phase

Initialization

• Clear iterative
pattern

• With an initialization
phase

• All iterations are
similar
 We can select a

few to analyze

4 April 2024 Durham

• Not always easy

10

Identify structure

6 iterations
Finalization

• There are 6 iterations and one
finalization phase

• Iterations are not regular along
time
 Different pattern of load balance
 Different pattern of durations

4 April 2024 Durham

• Not always easy

11

Identify structure

• It is not easy to detect an
iterative structure

• No global synchronizations

• Zooming in we detect that
synchronizations only happen at node
level

• Not possible to determine iterations

C
o

m
p

u
tatio

n
 Scalab

ility
P

aralle
l Efficie

n
cy

C
o

m
m

u
n

icatio
n

Efficie

n
cy

12

The journey

Identify

Structure

Select Focus
of Analysis

(FoA)

Efficiency
Metrics

Load balancing

Conclusions
and

suggestions

Serialization

Transfer

Instruction
scalability

IPC
scalability

Frequency
scalability

Detailed
Analysis

Select Focus
of Analysis

(FoA)

• Objective: Select the region we want to analyze
• Not a correct answer, depends on the context of the analysis

• For the same trace we may select two different FoA to perform two different
studies with two different objectives.

13

Select Focus of Analysis (FoA)

C
o

m
p

u
tatio

n
 Scalab

ility
P

aralle
l Efficie

n
cy

C
o

m
m

u
n

icatio
n

Efficie

n
cy

14

The journey

Identify

Structure

Select Focus
of Analysis

(FoA)

Efficiency
Metrics

Load balancing

Conclusions
and

suggestions

Serialization

Transfer

Instruction
scalability

IPC
scalability

Frequency
scalability

Detailed
Analysis

Efficiency
Metrics

Global
Efficiency

Parallel
Efficiency

Load
Balance

Communication
Efficiency

Serialization

Transfer

15

The Efficiency Metrics

Computation
Scalability

IPC
Scalability

Instructions
Scalability

Frequency
Scalability

X

X

X

X

• Hierarchical model

• Multiplicative metrics

• 1 to 100% scale

• Two kind of metrics:
• Efficiency metrics

• Absolute metrics

• Scalability metrics
• Relative to a base case
• 100% for the base case

4 April 2024 Durham

The Efficiency Metrics

• What they are NOT
• The end of the journey

• What they are…
• … a general mechanism to describe

the fundamental concepts of
parallelism

• … a hint that tells where to look
• … a way to quantify efficiency loss
• … a fair comparison between

different…
• … code versions
• … architectures
• … core counts (scalability)
• … applications

• For each metric we are going to see:
• What it quantifies
• How it is computed

• Formula
• Graphical

• Interpretation
• Where to look next

16 4 April 2024 Durham

The Efficiency Metrics

• Usually shown in a table
• Rows: Metrics

• Columns: Different traces

• With colored cells as a heat map

• What to look for?
• Low values

• Trend

• High values

17 4 April 2024 Durham

C
o

m
p

u
tatio

n
 Scalab

ility
P

aralle
l Efficie

n
cy

C
o

m
m

u
n

icatio
n

Efficie

n
cy

18

The journey

Identify

Structure

Select Focus
of Analysis

(FoA)

Efficiency
Metrics

Load balancing

Conclusions
and

suggestions

Serialization

Transfer

Instruction
scalability

IPC
scalability

Frequency
scalability

Detailed
Analysis

P
aralle

l Efficie
n

cy

• The state of a processes is
simplified to two values:
• Useful == Computing

• Not useful == Otherwise

19

Some semantics first

Computing
Barrier

Receive
Send

Reduce

C1
1

C2
1 C2

2

C1
2

C3
1

C4
1 C4

2

C3
2

C1
3

C2
3

C3
3

C4
3

Computing
Communication

p1

p2

p3

p4

T

P

• T = Elapsed time

• P = Number of processes

• ci = Compute time of
process i
 𝑐𝑖 = 𝑐𝑖

𝑗𝑛
𝑗=1

• C = Total compute time
 𝐶 = 𝑐𝑖

𝑃
𝑖=1

4 April 2024 Durham

20

Parallel Efficiency

Quantifies: The extent to which all resources
in the system are kept active doing useful work

Interpretation: A low value indicates that a low
fraction of the time consumed is used to do useful
computation.

Where to look next?
• Look at its child metrics

How it is computed: Ratio between time used
to do useful computation and consumed cpu
time
 Parallel Efficiency = / (+)

How it is computed:

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
 𝑐𝑖
𝑃
𝑖=1

𝑃 ∗ 𝑇

C1
1

C2
1 C2

2

C1
2

C3
1

C4
1 C4

2

C3
2

C1
3

C2
3

C3
3

C4
3

Computing
Communication

p1

p2

p3

p4

T

P

4 April 2024 Durham

C
o

m
p

u
tatio

n
 Scalab

ility
P

aralle
l Efficie

n
cy

C
o

m
m

u
n

icatio
n

Efficie

n
cy

21

The journey

Identify

Structure

Select Focus
of Analysis

(FoA)

Efficiency
Metrics

Load balancing

Conclusions
and

suggestions

Serialization

Transfer

Instruction
scalability

IPC
scalability

Frequency
scalability

Detailed
Analysis

Load balance

22

Load Balance

Quantifies: The efficiency loss due to the global
distribution of work among processes.

How it is computed: Ratio between time used
to do useful computation and the useful
computation of the most loaded process
multiplied by the number of processes
 Load Balance = / (+)

How it is computed:

𝐿𝑜𝑎𝑑 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 =
 𝐶𝑖
𝑃
𝑖=1

𝑚𝑎𝑥𝑃𝑖=1(𝑐𝑖) ∗ 𝑃

C1
1

C2
1 C2

2

C1
2

C3
1

C4
1 C4

2

C3
2

C1
3

C2
3

C3
3

C4
3

Computing
Communication

p1

p2

p3

p4

T

P

C1
1

C2
1 C2

2

C1
2

C3
1

C4
1 C4

2

C3
2

C1
3

C2
3

C3
3

C4
3

Computing
Communication

p1

p2

p3

p4

T

Load Balance

P

max(ci)

“Collapse” computations

4 April 2024 Durham

• What to look next?
• We try to understand the cause of the Load Imbalance
• In general can have 3 sources

• Number of instructions  Histogram of useful instructions

• IPC  Histogram of IPC
• Frequency  Histogram of cycles per us

23

Load Balance

Interpretation: A low value in this metric
indicates that more highly loaded processes
keep other processes idle for a significant
amount of time.

• A single highly loaded process will make
this metric report a low value

• A single low loaded process won’t have
an effect on this metric

LB =
2 + 1 + 1 + 1 + 1

2 ∗ 5
=
6

10
= 0.6

LB =
2 + 2 + 2 + 2 + 1

2 ∗ 5
=
9

10
= 0.9

C
o

m
p

u
tatio

n
 Scalab

ility
P

aralle
l Efficie

n
cy

C
o

m
m

u
n

icatio
n

Efficie

n
cy

24

The journey

Identify

Structure

Select Focus
of Analysis

(FoA)

Efficiency
Metrics

Load balancing

Conclusions
and

suggestions

Serialization

Transfer

Instruction
scalability

IPC
scalability

Frequency
scalability

Detailed
Analysis C

o
m

m
u

n
icatio

n

Efficie
n

cy

25

Communication Efficiency

Quantifies: The efficiency loss due to the
communication of data. Be it due to
synchronizations between processes or to the
overhead introduced by the communication
itself. Excluding time loss due to global load
imbalance

How it is computed: Ratio between the useful
computation time of the most loaded
processes and the total elapsed time

How it is computed:

𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐸𝑓𝑓. =
𝑚𝑎𝑥𝑃𝑖=1(𝑐𝑖)

𝑇

C1
1

C2
1 C2

2

C1
2

C3
1

C4
1 C4

2

C3
2

C1
3

C2
3

C3
3

C4
3

Computing
Communication

p1

p2

p3

p4

T

P

C1
1

C2
1 C2

2

C1
2

C3
1

C4
1 C4

2

C3
2

C1
3

C2
3

C3
3

C4
3

Computing
Comm. Eff.

p1

p2

p3

p4

T

Load Balance
P

max(ci)

“Collapse” computations

Communication Eff.= (+) / (+ +)

4 April 2024 Durham

Communication Efficiency

• This metric can report good values in codes where a
profile reports significant time in MPI and that would
be reported by a bad load balance efficiency

• What to look next?

• If possible child metrics

• If not…
• How many MPI calls are made?

• Histogram of MPI calls

• How often? Granularity of computations
• Useful duration

• How much data is sent?
• Bytes sent per MPI call

• Which are the semantics of the communication?
• Chains of dependences?

• MPI calls

26

Interpretation: A low value in this metric
indicates that the interaction between
processes is impacting the performance.

4 April 2024 Durham

C
o

m
p

u
tatio

n
 Scalab

ility
P

aralle
l Efficie

n
cy

C
o

m
m

u
n

icatio
n

Efficie

n
cy

27

The journey

Identify

Structure

Select Focus
of Analysis

(FoA)

Efficiency
Metrics

Load balancing

Conclusions
and

suggestions

Serialization

Transfer

Instruction
scalability

IPC
scalability

Frequency
scalability

Detailed
Analysis

Transfer

28

Transfer Efficiency

Quantifies: Efficiency loss related to the non
instantaneous nature of communication
mechanisms. Includes time to transmit the
data over the physical channel and the
overhead in the libraries.

How it is computed:

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝐸𝑓𝑓. =
𝑇𝑖𝑑𝑒𝑎𝑙
𝑇

“Ideal” simulation:
Communications are instantaneous How it is computed: Ratio between elapsed

time in the ideal simulation and the elapsed
time in the real execution
 Transfer Eff.= (+) / (+ +)

C1
1

C2
1 C2

2

C1
2

C3
1

C4
1 C4

2

C3
2

C1
3

C2
3

C3
3

C4
3

Computing
Communication

p1

p2

p3

p4

T

P

T_ideal

Transfer

C1
1

C2
1 C2

2

C1
2

C3
1

C4
1 C4

2

C3
2

C1
3

C2
3

C3
3

C4
3

Computing
Communication

p1

p2

p3

p4

T

P

4 April 2024 Durham

• What to look next?
• Determine if the transfer

problem is Bandwidth or
Latency
• Note that in Latency we

include the overhead of the
communication library

• Use Simulations of Dimemas
• Different BW and latency

29

Transfer Efficiency

Interpretation: Low values indicate that the
execution is suffering from a high overhead of
the runtime or a poor latency or bandwidth of
the network.

Actual run

Ideal run

Nominal run

Low latency

C
o

m
p

u
tatio

n
 Scalab

ility
P

aralle
l Efficie

n
cy

C
o

m
m

u
n

icatio
n

Efficie

n
cy

30

The journey

Identify

Structure

Select Focus
of Analysis

(FoA)

Efficiency
Metrics

Load balancing

Conclusions
and

suggestions

Serialization

Transfer

Instruction
scalability

IPC
scalability

Frequency
scalability

Detailed
Analysis

Serialization

31

Serialization Efficiency

Quantifies: Inefficiencies caused by circular
dependences or non-uniform imbalances

How it is computed:

How it is computed: Ratio between useful
computation of most loaded process and
elapsed time in the ideal simulation
 Serialization Eff.= (+) / (+)

Computing
Serialization

Load Balance 𝑆𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐸𝑓𝑓. =
𝑚𝑎𝑥𝑃𝑖=1(𝑐𝑖)

𝑇𝑖𝑑𝑒𝑎𝑙

“Ideal” simulation:
Communications are instantaneous

C1
1

C2
1 C2

2

C1
2

C3
1

C4
1 C4

2

C3
2

C1
3

C2
3

C3
3

C4
3

Computing
Communication

p1

p2

p3

p4

P

“Collapse” computations

C1
1

C2
1 C2

2

C1
2

C3
1

C4
1 C4

2

C3
2

C1
3

C2
3

C3
3

C4
3

p1

p2

p3

p4

P

max(ci)

Transfer

C1
1

C2
1 C2

2

C1
2

C3
1

C4
1 C4

2

C3
2

C1
3

C2
3

C3
3

C4
3

Computing
Communication

p1

p2

p3

p4

P

T_ideal

Transfer

4 April 2024 Durham

• What to look next?
• Discard noise

• Cycles per us

• Try to identify causes for circular waits.

• Understand semantics of the communication
• MPI Calls

32

Serialization Efficiency

Interpretation: A low value indicates the
existence of circular dependences. They can be
caused by actual algorithmic serialization,
irregularities in the load of processes during
the execution or noise.

4 April 2024 Durham

C
o

m
p

u
tatio

n
 Scalab

ility
P

aralle
l Efficie

n
cy

C
o

m
m

u
n

icatio
n

Efficie

n
cy

33

The journey

Identify

Structure

Select Focus
of Analysis

(FoA)

Efficiency
Metrics

Load balancing

Conclusions
and

suggestions

Serialization

Transfer

Instruction
scalability

IPC
scalability

Frequency
scalability

Detailed
Analysis

C
o

m
p

u
tatio

n

Scalab
ility

34

Computation Scalability

Quantifies: How the time spent
computing scales with respect to the
reference case.

Interpretation: A low value indicates
time grows per core count. Ideally the
total compute time to solve a problem
should be constant, independent of
core count (in strong scaling).

How it is computed: Ratio between time
spent on useful computation in the
reference case and the time spent on
useful computation on current run.

How it is computed:
𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑆𝑐. =

𝐶𝑟𝑒𝑓

𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡

• Relative metric, based on a reference case.
• Cref = Useful Computation of the reference run
• Ccurrent = Useful computation current run

• 100% for the reference case

• Can be weak or strong scaling
• Strong scaling for all the formulas presented

• In strong scaling we assume total compute time and total number of
instructions should remain constant as we increase the number of processes

• In an analogous way weak scaling can be computed

• High level metric composed by three child metrics based on:
• T = # instr. / (IPC * freq)

C1
1

C2
1 C2

2

C1
2

C3
1

C4
1 C4

2

C3
2

C1
3

C2
3

C3
3

C4
3

Computing
Communication

p1

p2

p3

p4

T

P

4 April 2024 Durham

C
o

m
p

u
tatio

n
 Scalab

ility
P

aralle
l Efficie

n
cy

C
o

m
m

u
n

icatio
n

Efficie

n
cy

35

The journey

Identify

Structure

Select Focus
of Analysis

(FoA)

Efficiency
Metrics

Load balancing

Conclusions
and

suggestions

Serialization

Transfer

Instruction
scalability

IPC
scalability

Frequency
scalability

Detailed
Analysis

Instruction
scalability

36

Instructions Scalability

Quantifies: How the number of instructions
scales with respect to the reference case.

Interpretation: A value less than 100 indicate that the
total number of instructions to solve the problem
grows with core count, which ideally should not be the
case.
May be caused by code replication (computed by all
processes, by an increase in the surface to volume
ratio when computations on the surface/boundary are
"replicated", ...

How it is computed:

How it is computed: Ratio between number of
instructions executed on the reference case
and the number of instructions executed on
current run.

𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 𝑆𝑐. =
𝐼𝑟𝑒𝑓

𝐼𝑐𝑢𝑟𝑟𝑒𝑛𝑡

• Relative metric, based on a reference case.
• Iref = Total number of instructions executed on the reference run

• Icurrent = Total number of instructions executed on the current run

• 100% for reference case

4 April 2024 Durham

C
o

m
p

u
tatio

n
 Scalab

ility
P

aralle
l Efficie

n
cy

C
o

m
m

u
n

icatio
n

Efficie

n
cy

37

The journey

Identify

Structure

Select Focus
of Analysis

(FoA)

Efficiency
Metrics

Load balancing

Conclusions
and

suggestions

Serialization

Transfer

Instruction
scalability

IPC
scalability

Frequency
scalability

Detailed
Analysis

IPC
scalability

38

IPC Scalability

Quantifies: How the IPC scales with respect to
the reference case.

Interpretation: A value less than 100 indicates that the IPC
for the specific core count is worse that of the reference
case. May be caused by different locality behavior,
contention on resources such as memory bandwidth,

A value above 100 indicates a higher IPC than the reference
case this can be produced by cache effects for example.

How it is computed:

How it is computed: Ratio between average
IPC on the current run and the average IPC on
the reference run.

𝐼𝑃𝐶 𝑆𝑐. =
𝐼𝑃𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝐼𝑃𝐶𝑟𝑒𝑓

• Relative metric, based on a reference case.
• IPCref = Average IPC of the reference run

• IPCcurrent = Average IPC current run

• 100% otherwise

4 April 2024 Durham

C
o

m
p

u
tatio

n
 Scalab

ility
P

aralle
l Efficie

n
cy

C
o

m
m

u
n

icatio
n

Efficie

n
cy

39

The journey

Identify

Structure

Select Focus
of Analysis

(FoA)

Efficiency
Metrics

Load balancing

Conclusions
and

suggestions

Serialization

Transfer

Instruction
scalability

IPC
scalability

Frequency
scalability

Detailed
Analysis

Frequency
scalability

40

Frequency Scalability

Quantifies: How the frequency scales with
respect to the reference case.

Interpretation: A value less than 100 indicates that the
frequency is lower than the reference frequency. This
may be caused by "preemptions", power management
measures, ...

How it is computed:

How it is computed: Ratio between average
frequency on the current run and the average
frequency on the reference run.

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑆𝑐. =
𝐹𝑟𝑒𝑞𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝐹𝑟𝑒𝑞𝑟𝑒𝑓

• Relative metric, based on a reference case.
• Freqref = Average frequency on the reference run
• Freqcurrent = Average frequency on the current run

• 100% for the reference case

4 April 2024 Durham

C
o

m
p

u
tatio

n
 Scalab

ility
P

aralle
l Efficie

n
cy

C
o

m
m

u
n

icatio
n

Efficie

n
cy

41

The journey

Identify

Structure

Select Focus
of Analysis

(FoA)

Efficiency
Metrics

Load balancing

Conclusions
and

suggestions

Serialization

Transfer

Instruction
scalability

IPC
scalability

Frequency
scalability

Detailed
Analysis

Conclusions
and

suggestions

Detailed
Analysis

Global
Efficiency

Parallel
Efficiency

Load
Balance

Communication
Efficiency

Serialization Transfer

42

Factors and causes

Computation
Scalability

IPC
Scalability

Instructions
Scalability

Frequency
Scalability

Instruction
balance

Runtime
overhead

OS
noise

Code
replication

SM
synchronization

Numaness

Instruction
mix

Sharing effects
(Cache capacity,

memory bandwidth,
power)

4 April 2024 Durham

43

Contact:
 https://www.pop-coe.eu
 pop@bsc.es
 @POP_HPC
 youtube.com/POPHPC

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 101143931. The JU receives
support from the European Union’s Horizon Europe research and innovation programme and Spain, Germany, France, Portugal and the Czech Republic.

Performance Optimisation and Productivity 3
A Centre of Excellence in HPC

